
LLNL-PRES-737110
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Melodee: Solving ODEs with platform-
specific code generation
DOE COE Performance Portability Meeting

Robert Blake

August 24, 2017



LLNL-PRES-737110
2

Melodee is...

A language for describing 
ordinary differential equations

A code-generation toolkit for 
ordinary differential equations

Modular Expression Language for Ordinary Differential Equation Editing

For users For developers



LLNL-PRES-737110
3

Overview

§ Motivating problem– cardiac electrophysiology

§ Design of the language

§ Using Melodee to generate platform specific code
— GPUs
— CPUs
— KNL

§ Advantages of DSLs and code generation 



LLNL-PRES-737110
4

Reaction term for cardiac electrophysiology

Smedlib, wikipedia, CCA-SA 

§ Embarrassingly parallel ODEs

§ Computation-bound

§ Each cell requires
— ~ 20-60 differential variable updates
— ~ 60-100 libm evaluations
— ~ 150-500 equation calculations

§ Reaction takes 80% of the flops



LLNL-PRES-737110
5

§ Cardioid was a Gordon Bell Finalist

§ Exactly one reaction model optimized for BGQ
— Math functions replaced with hard-coded rational polynomials
— Thread load balancing based on BGQ architecture
— Lots of BGQ vector intrinsics
— 5800 LOC for 173 equations

§ Our job: port this to GPUs

It’s hard to port platform-specific code



LLNL-PRES-737110
6

Our portability woes will only get worse

§ The reaction model changes constantly
— Reaction models are under constant development
— Every experiment needs a novel reaction model

§ We need platform-specific optimizations for performance

§ ...but optimized code is 
— Un-maintainable
— Platform dependent
— Man-hour devouring
— Tedious to write



LLNL-PRES-737110
7

Melodee: a language for ODEs

§ Melodee is a domain specific 
language for describing 
ordinary differential equations

§ Not Turing complete

§ http://github.com/llnl/melodee

subsystem lorenz {
sigma = 10;
beta = 8/3;
rho = 28;

diffvar x,y,z;
x.init = 1;
y.init = 1;
z.init = 1;

x.diff = sigma*(y-x);
y.diff = x*(rho-z)-y;
z.diff = x*y-beta*z;

}

http://github.com/melodee


LLNL-PRES-737110
8

Design goals for Melodee

§ No existing language fit our needs, so we made our own

§ Goals
— Separate math from implementation
— Compatible – easy to convert from C, Matlab, and cellML
— Agnostic – independent of domain & simulator
— Extendible – separate domain knowledge from semantics
— Modular – encourage re-use for large ODEs
— Safe – unit checking for common mistakes

§ Would this be useful for your domain?

BioNetGen



LLNL-PRES-737110
9

Hodgkin Huxley in Melodee
integrate time {ms};

shared V {mV};
shared Iion {uA/uF};
shared E_R {mV};

subsystem hodgkin_huxley {
subsystem leakage_current {
E_L = E_R+10.613;
@param g_L = 0.3;
provides accum Iion += g_L*(V-E_L);

}
subsystem potassium_channel {
diffvar @gate n {1};
alpha_n = -0.01*(V+65)/expm1(-(V+65)/10);
beta_n = 0.125*exp((V+75)/80);
n.init = 0.325;
n.diff = (alpha_n*(1-n)-beta_n*n);
E_K = (E_R-12);
@param g_K = 36;
provides accum Iion += g_K*n^4*(V-E_K);

}
subsystem sodium_channel {
diffvar @gate h {1};
alpha_h {1/ms} = 0.07*exp(-(V+75)/20);
beta_h {1/ms} = 1/(exp(-(V+45)/10)+1);
h.init = 0.6;

h.diff = (alpha_h*(1-h)-beta_h*h);
diffvar @gate m {1};
alpha_m = -0.1*(V+50)/(exp(-(V+50)/10)-1);
beta_m = 4*exp(-(V+75)/18);
m.init = 0.05;
m.diff = (alpha_m*(1-m)-beta_m*m);
E_Na = (E_R+115);
@param g_Na = 120;
provides accum Iion += g_Na*m^3*h*(V-E_Na);

}
}
subsystem membrane {
provides diffvar @interp(-100,100,2e-2) V;
provides V_init {mV} = -75;
Cm = 1;
i_Stim = 0;
if (time >= 10 && time <= 10.5) {
i_Stim = 20;

}
V.init = V_init;
V.diff = -Iion+i_Stim;

}
subsystem full_model {
use hodgkin_huxley {
export E_R as V_init;

}
use membrane;

}

Krishnavedala, wikipedia, CC0



LLNL-PRES-737110
10

Melodee is a code generation toolkit

§ Developer writes code generators in python
— Cardioid generator is only 600 LoC!

§ Melodee parses .mel models for you
— gives you a list of expressions in SSA 

§ Sympy for symbolic manipulation
— Free symbolic differentiation.

§ Flexible
— Backwards compatible with cellML
— Used in 3 different simulators



LLNL-PRES-737110
11

Reaction model optimizations

§ Rational polynomials – replace expensive function evaluations with faster 
functions

§ Kernel fission vs fusion – separate the ODE into multiple functions or one 
function

§ Replace exp/log – variants based on floating point binary representation

§ Intrinsics –use the compiler to vectorize or do it ourselves

§ SoA vs AoS – How do we lay out our data structures?

Optimization BGQ P100 KNL
Rational polynomials yes yes no
Kernel fission vs fusion fission fusion fusion
Replace exp/log yes no no
Explicit vectorization with intrinsics yes no yes
SoA vs AoS SoA SoA AoS



LLNL-PRES-737110
12

Rational polynomials can replace 
expensive functions

becomes

double Afcaf = 0.3+0.6/(1.0+exp((v-10.0)/10.0));

double Afcaf;
{

double numerCoeff[]={-9.52275328672 ... };
double denomCoeff[]={2.18001528726e ... };
double numerator=_numerCoeff[0];
for (int jj=1; jj<8; jj++)

_numerator = numerCoeff[jj] + v*numerator;
double _denominator=denomCoeff[0];
for (int jj=1; jj<6; jj++)

_denominator = _denomCoeff[jj] + v*denominator;
Afcaf = numerator/denominator;

}



LLNL-PRES-737110
13

GPU: Embedding the coefficients is much faster

poly(double *in,
int np, double *p,
double *out)

{
int ii = blockIdx.x*blockDim.x + threadIdx.x;

out[ii]=in[ii];
double z = 0;
for (int k=np-1; k>=0; k--)

z = p[k] + z*in[ii];
out[ii] = z;

double *my_p[] = {...};
double z = 0;
for (int k=np-1; k>=0; k--)

z = my_p[k] + z*in[ii];
out[ii] = z;

Embedded:
40.760us

Memcpy:
30.940us

Naïve:
202.15us

np=60
in[1e6]
out[1e6]

/* 0x2b8 */
{ IADD32I R3, R3, -0x1;
LDG.E.64 R10, [R6]; }
ISETP.GT.AND P0, PT, R3, RZ, PT;
IADD32I R6.CC, R6, -0x8;
IADD32I.X R7, R7, -0x1;
DFMA R4, R8, R4, R10;
@P0 BRA 0x2b8;

DFMA R8,R2,R8,c[0x2][0x68];
DFMA R8,R2.reuse,R8,c[0x2][0x60];
DFMA R8,R2.reuse,R8,c[0x2][0x58];
...



LLNL-PRES-737110
14

Unrolling with a duff’s device

__constant__ double c_p[];
...
double z = 0;
switch (np) {

case 8: c_p[7] + z*in[ii];
case 7: c_p[6] + z*in[ii];
case 6: c_p[5] + z*in[ii];
case 5: c_p[4] + z*in[ii];
case 4: c_p[3] + z*in[ii];
case 3: c_p[2] + z*in[ii];
case 2: c_p[1] + z*in[ii];
case 1: c_p[0] + z*in[ii];
default:

}
out[ii] = z;

§ On CPUs, this is 
— just as fast as embedding
— uses run-time coefficients

§ On GPUs
— c_p must be constant memory
— c_p must be a constexpr
— ptxas doesn’t emit indirect branches
• Still have to pay for performance
• Memcpy: 30us
• Embedded: 40us
• Unrolled: 46us

Embedded coefficients are faster and simpler on GPUs

Unrolled



LLNL-PRES-737110
15

Polynomial code on CPUs

Description gcc icc clang
embedded 6.81 16.56 6.94
naïve 21.94 23.95 22.27
unrolled 14.46 14.67 14.239
embedded+vec 6.79 6.86 6.87
naïve+vec 7.35 7.91 10.12
unrolled+vec 6.83 6.82 6.86

§ Ran 1M points for 2k iterations for 15 degree polynomial
— All times in seconds (lower is better)

§ Vec means using explicit vector intrinsics

Explicit vectorization must be used for performance on CPUs



LLNL-PRES-737110
16

Rational polynomial summary

§ BGQ, Haswell: need manual vectorization

§ GPU: coefficients must be known at compile time

§ KNL: rational polynomials are slower?
— I see a 10% slowdown currently
— KNL has vector intrinsics for exp, etc.
— Rational polynomials cause L1 spills??



LLNL-PRES-737110
17

Intrinsics

§ BGQ, Haswell, KNL
— Compilers will NOT auto-vectorize this code
— Must generate vector intrinsics specific to platform

§ GPU
— No intrinsics necessary



LLNL-PRES-737110
18

Kernel fission or fusion?

§ BGQ: required separating the reaction model into decoupled 
functions
— Each thread integrated different variables independently

§ KNL, GPUs: Faster results by putting everything in one 
monolithic kernel
— Hide memory latency with computation.



LLNL-PRES-737110
19

Replacing exp/log

§ Use fact that IEEE754 contains a base-2 logarithm in exponent

§ BGQ: essential for good performance

§ GPU: replacing exp/log is no faster.

§ KNL: 50% slowdown when replacing exp/log
— Faster intrinsics on chip



LLNL-PRES-737110
20

Data layout

§ Haswell, KNL: AoSoV is faster

§ BGQ, GPU: SoA is faster

Structure of Arrays
struct state {

double x[n];
double y[n];

}

Array of Structures of Vectors
struct stateVec {

double x[vwidth];
double y[vwidth];

}
stateVec state[n/vwidth];



LLNL-PRES-737110
21

Summary

§ Domain specific languages make us more productive

§ Code generation is essential for portable performance
Optimization BGQ P100 KNL
Rational polynomials yes yes no
Kernel fission vs fusion fission fusion fusion
Replace exp/log yes no no
Explicit vectorization with intrinsics yes no yes
SoA vs AoS SoA SoA AoS

BGQ P100 KNL
Performance (% of peak) 60% 38% 11%

http://github.com/llnl/melodee

http://github.com/melodee


LLNL-PRES-737110
22

§ LLNL
— Dave Richards
— Tom O’Hara
— Xiaohua Zhang

§ IBM
— Doru Bercea

§ Intel
— Doug Jacobsen

Acknowledgements





LLNL-PRES-737110
24

Use case: Developing a new reaction model

integrate time {ms};
shared V {mV};
shared Iion {uA/uF};
shared V_init {mV};

subsystem ORd_with_newIKr {
shared ko {mM};
shared EK {mV};
shared IKr {uA/uF};
use ORd - .sodium_current - .rapid_rectifier_current {

export ENa;
}
use TT06.fast_sodium_current {

export i_Na as INa;
export E_Na as ENa;

}
use newIKr;

}


